High Concentrations of TNF-α Induce Cell Death during Interactions between Human Umbilical Cord Mesenchymal Stem Cells and Peripheral Blood Mononuclear Cells

نویسندگان

  • Xue Li
  • Wenjing Du
  • Feng Xia Ma
  • Xiaoming Feng
  • Francis Bayard
  • Zhong Chao Han
  • Guo-Chang Fan
چکیده

Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are currently being used as novel therapeutic agents in numerous clinical trials. Previous works have shown that hUC-MSCs possess profound immunomodulatory capacities through IL-1 stimulation produced by peripheral blood mononuclear cells (PBMCs), their main cellular partner in most pathophysiological and therapeutic situations. The present study was designed to explore the role of TNF-α in these interactions. In these experiments, we demonstrated that TNF-α originated from PBMCs under the influence of IL-1. We also showed that TNF-α acted differently depending upon the concentrations reached. At low concentrations it clearly contributed to IL-6 and monocyte chemotactic protein 1 (MCP-1) production. At high concentrations, used alone or in association with the TNF-related apoptosis-inducing ligand, TNF-α also stimulated hUC-MSC IL-6 but, more intensely, MCP-1 production. This stimulation was associated but independent of apoptosis induction in a process involving Inhibitor of Apoptosis Proteins. Interferon gamma (IFN-γ), tested to stimulate PBMC and tissue activation, amplified IL-6 and MCP-1 production and cell death by, apparently, a different process involving necrosis. Our findings bring new insights into the complex interactions between hUC-MSCs and PBMCs, involving cytokines, chemokines and cell death, and are of fundamental importance for tissue homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton's jelly of umbilical cord on PBMCs

Objective(s):Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of human MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ) of human umbilical cord. The current study has compared immu...

متن کامل

Immediate Exposure to TNF-α Activates Dendritic Cells Derived from Non-Purified Cord Blood Mononuclear Cells

Background: Tumor necrosis factor alpha (TNF-α) is a primary mediator of immune regulation and might be required in the early stages of DC development from CD34+ cells. However, details of optimal timing of exposure to TNF-α in DC development process in monocytes or non-purified hematopoitic cells are still lacking and clear benefits of this approach to the development of DCs remain to be valid...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Cord Blood

  Stem cells are naïve or master cells. This means they can transform into special 200 cell types as needed by body, and each of these cells has just one function. Stem cells are found in many parts of the human body, although some sources have richer concentrations than others. Some excellent sources of stem cells, such as bone marrow, peripheral blood, cord blood, other tissue stem cells and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015